注册

学界 | 无需进行滤波后处理,利用循环推断算法实现歌唱语音分离


来源:机器之心

原标题:学界 | 无需进行滤波后处理,利用循环推断算法实现歌唱语音分离 选自arXiv 机器之心编译

原标题:学界 | 无需进行滤波后处理,利用循环推断算法实现歌唱语音分离



近日,来自 Fraunhofer IDMT、Tampere University of Technology 与蒙特利尔大学的 Yoshua Bengio 等人在 arXiv 上提交了一篇论文,提出跳过使用泛化维纳滤波器进行后处理的步骤,转而使用循环推断算法和稀疏变换步骤进行歌唱语音分离,效果优于之前基于深度学习的方法。这篇论文已经提交至 ICASSP 2018。


论文:Monaural Singing Voice Separation with Skip-Filtering Connections and Recurrent Inference of Time-Frequency Mask

  • 论文链接:https://arxiv.org/abs/1711.01437v1

  • on-line demo 地址:https://js-mim.github.io/mss_pytorch/

  • GitHub 地址:https://github.com/Js-Mim/mss_pytorch

摘要:基于深度学习的歌唱语音分离依赖于时频掩码(time-frequency masking)。在很多情况中,掩码过程(masking process)不是一个可学习的函数,也无法封装进深度学习优化中。这造成的结果就是,大部分现有方法依赖于使用泛化维纳滤波器(generalized Wiener filtering)进行后处理。我们的研究提出一种方法,在训练过程中学习和优化源依赖掩码(source-dependent mask),无需上述后处理步骤。我们引入了一种循环推断算法、一种稀疏变换步骤用于改善掩码生成流程,以及一个学得的去噪滤波器。实验结果证明,与之前单声道歌唱语音分离的顶尖方法相比,该方法使信号失真比(signal to distortion ratio)提高了 0.49 dB,信号干扰比(signal interference ratio)提高了 0.30 dB。

undefined

图 1:方法图示。

表 1:几种方法的中值信号失真比(SDR)和信号干扰比(SIR)(单位为 dB)。下划线为我们提出的方法。值越高效果越好。

  • 好文
  • 钦佩
  • 喜欢
  • 泪奔
  • 可爱
  • 思考

频道推荐

凤凰网公益基金救助直达

凤凰科技官方微信

凤凰新闻 天天有料
分享到: