首先我要说,航天器离开地球时并非不用隔热层——不过你没错,返回大气产生的热量是要更高一些的。
想明白为什么,你首先得稍微了解一下大气阻力。阻力是当你将物体推进大气时受到的来自大气的抵抗。它使你变慢,还会将你的一些能量转变成热量。
一个物体受到的阻力大小取决于几个因素:大气的密度(大气越密,它产生的阻力越大),物体的运动速度(速度越快,它受到的阻力越大)以及该物体垂直于运动方向的横截面面积和形状(想想看,降落伞大大的表面积是为了产生巨大的阻力让人慢下来,而赛车精美的流线形车身是为了将阻力降到最小)。
结合上述因素我们不难发现,在大气中一个定点上,航天器受到的阻力只会因其速度变化或横截面面积形状变化而变化。原来,这两个因素在(航天器)离开和返回地球时是不一样的。
假如你必须让航天器在发射即刻便具有完全足够进入轨道的速度,大气阻力将是升空过程中的“拦路虎”。还好,如果你曾经见过航天飞机(或其他航天器)发射你就明白事实并非如此——恰恰相反,航天飞机最初的起步是很慢的,它要在上升过程中不断地燃烧燃料给引擎点火才会最终得以提速。
当你越飞越高,大气的密度会急剧(实际上是指数级)下降,所以一旦所在位置足够高,你大幅度地加速也不会制造出太大阻力了。工程师们所说的最大q值点(最大动压点,译者注)——便是大气阻力达到最大值的地方。这个点位于发射后一分钟左右的几千米高空处——过了这个点,航天飞机引擎的油门便被开到最大了(不过航天飞机还需要飞到更高的地方才能达到最大速度)。
好了,那么返回地球时呢?航天飞机在轨道上以高速运行——将近每秒8千米(每小时17000多英里)。为了让航天飞机安全回家,你需要让它大幅度减速——如果你曾见过航天飞机着陆,你就会发现这和飞机降落没什么两样,也就是说它此时是以相对缓慢的速度运行的。
一种让航天飞机减速的办法是点燃它的火箭——一套和送它上天的火箭类似的程序。不过,这个过程需要耗费极大量的燃料(看看发射便知),并且将这些为了返航而额外准备的燃料一路扛上天的成本是难以计数的。
另一种更高效的办法是让主引擎烧得相对“温柔”一些(以便让航天飞机慢下来,进入一个与大气接触更频繁的位置相对较低的轨道)然后把剩下的工作都交给大气阻力——也就是说,大气阻力是被人为地用来让航天飞机减速的,所以你早就想好返回地球时要产生很多热量了!你可能已经注意到,航天飞机上升的时候是“尖端”朝上——它的形状非常符合空气动力学(就像赛车)因此阻力很小。但是降落的途中,它得用黑黑的大肚子撞向大气并这样“趴”在空中往下掉——这时它的形状变得不再那么符合空气动力学(就像降落伞),于是便减速了。
参考资料
1.WJ百科全书
2.天文学名词
3. curious.astro.cornell- Britt Scharringhausen
如有相关内容侵权,请于三十日以内联系作者删除
转载还请取得授权,并注意保持完整性和注明出处
“特别声明:以上作品内容(包括在内的视频、图片或音频)为凤凰网旗下自媒体平台“大风号”用户上传并发布,本平台仅提供信息存储空间服务。
Notice: The content above (including the videos, pictures and audios if any) is uploaded and posted by the user of Dafeng Hao, which is a social media platform and merely provides information storage space services.”